Master thesis project Octree light propagation volumes

John David Olovsson

Faculty of engineering, LTH Lund University

August 16, 2012

John David Olovsson Octree light propagation volumes

Octree light propagation volumes

- Global illumination
- Indirect diffuse lighting
- Real time

Octree light propagation volumes

- Global illumination
- Indirect diffuse lighting
- Real time
- Based on traditional light propagation volumes
- Using an octree based data structure

- Previous work
- Opherical harmonics
- O Light propagation volumes
- Octree light propagation volumes
- Sesults

< ロ > < 同 > < 回 > < 回 > < □ > <

æ

Functions over the unit sphere

- Defined for points s on the unit sphere
- f(s)
- Cartesian: s = (x, y, z), $x^2 + y^2 + z^2 = 1$, normalized vector
- Spherical $s = (\theta, \varphi)$
- Here: Represented using four coefficients

Example

Functions taking normalized direction vectors as their argument.

Clamped cosine lobe

- Useful for LPVs
- $f(\theta, \varphi) = \max(\cos \theta, 0)$
- Rotationally symmetric around Z-axis
- Rotated into direction d

Steps

- Create virtual point lights
- Inject light into grid
- Operation Propagate
- 4 Render

Create virtual point lights

- Texels of reflective shadow map
- Stores depth, normal and color

Inject light into grid

- Each VPL as a clamped cosine lobe
- Mapped to a grid position
- Added to existing value

Light propagation volumes

Propagation

- For each grid element
- To each adjacent element
- Evaluate stored SH
- Directed towards each face
- Reproject as clamped cosine lobe

Propagation

- Perform multiple iterations
- Use sum of all iterations

Render

- For each fragment
- Find grid position
- Evaluate towards negative normal
- Add to direct lighting

Octree LPVs

- Octree instead of uniform grid
- Two parts
 - Data storage levels
 - Index volume
- Some new steps

Octree light propagation volumes

Data storage levels

- Hierarchy of 3D grids, *levels*
- Sizes are powers of two

Example				
Level sizes				
0	$32 \times 32 \times 32$			
0	$16 \times 16 \times 16$			
2	$8 \times 8 \times 8$			
3	$4 \times 4 \times 4$			
4				

Octree light propagation volumes

Data storage levels

- Hierarchy of 3D grids, *levels*
- Sizes are powers of two

Index volume

- Stores the octree structure
- Same sizes as data storage
- One for each data storage level
- Contains: Which data storage level to use
- Sample: Minimum stored level

Light injection

- Inject everything to first level
- Leave other levels empty
- Index volume zero for injected elements

Downsampling

- Populate other levels
- Average from higher resolutions
- Update index volume

Propagation

- Individually on each level
- Same scheme as traditional LPVs
- Update index volume

Octree light propagation volumes

Merging

- Merge hierarchy into single LPV
- Sample index volume

2 1 1 0 2 1 0 0

Index volume

Resulting sampling

Rendering

- Use the merged LPV
- Same rendering as regular LPVs

・ロト ・四ト ・ヨト ・ヨト

æ

Results

э

Results

Performance

		Octree		Uniform
Part	Count	Total	Diff	Total
Frame	500	53193	-4801	57994
RSMCreate	9000	3053	316	2737
GVClear	500	671	-50	721
GVInject	1500	15593	-110	15703
GVDownsample	500	55	55	-
IXClear	500	2923	2923	-
LPVClear	500	4461	270	4191
LPVInject	1500	19929	-2884	22813
LPVDownsample	500	142	142	-
LPVPropagate	500	3788	-5615	9403
LPVMerge	500	39	39	-
Total			-4914	
			8.28%	

æ

Post-presentation

- Opponent questions
- Other questions

Post-presentation

- Opponent questions
- Other questions

Post-presentation

- Opponent questions
- Other questions

Thanks for listening!