
Lund University

Master thesis project

Octree light propagation volumes

Author:
John David Olovsson∗

Department of computer science
Faculty of engineering, LTH
Lund University

Supervisor:
Michael Doggett†

Faculty of engineering, LTH
Lund University

Examiner:
Tomas Akenine-Möller‡

Faculty of engineering, LTH
Lund University

September 9, 2012

∗dt07jo1@student.lth.se
†mike@cs.lth.se
‡tam@cs.lth.se

mailto:dt07jo1@student.lth.se
mailto:mike@cs.lth.se
mailto:tam@cs.lth.se

Abstract

This master thesis project presents a new method for representing light propaga-
tion volumes using an octree data structure, and for allowing light from regular
point light sources to be injected into it. The resulting technique uses full octrees
with the help of a separate data structure for representing the octree structure.
Light from point light sources is injected into the octree using an already proven
technique.

Some key parts of the original technique prove to be well suited for the
new data structure and can be greatly sped up by it. Other parts are mostly
una�ected and some new steps need to be introduced. The implementation of the
technique renders the Sponza Palace Atrium scene at 9.4 frames per second, with
good visual quality. This is with all steps involved in the technique including
indirect occlusion. While the implementation did not achieve real-time frame
rates, several possible improvements are presented. These may help to achieve
the desired frame rates. Additionally there are some visual artefacts that can be
experienced with the new technique, but they are generally not noticeable. Light
injection from multiple point light sources with the method used in this project
infers a large overhead compared to a single directional source. This additionally
counters the viability of the technique in practical real-time applications.

Acknowledgements

This thesis would not have been possible without, �rst and foremost, Michael
Doggett for being the supervisor of the project and for providing help and
guidance throughout the entire project. Additionally Thomas Kjeldsen, at the
Alexandra institute, provided invaluable assistance in explaining some of the
maths used for point light injection for subsurface light propagation volumes.
The thesis project also owes thanks to the examiner, Tomas Akenine-Möller.
Finally, fellow student Cem Eliyürekli has provided much assistance with quality
control and feedback on the project report.

Contents

1 Introduction 1

2 Previous work 3

3 Real-time global illumination 8

3.1 Spherical harmonics . 8
3.2 Light propagation volumes . 11

3.2.1 Virtual point light creation 12
3.2.2 Light injection . 13
3.2.3 Propagation . 14
3.2.4 Rendering . 15

3.3 Point light injection . 15

4 Method 18

4.1 Integration of existing techniques 19
4.2 Octree light propagation volumes 20

5 System description 26

5.1 Light propagation volume simulator 26
5.2 Real-time implementation . 27

6 Results 34

6.1 Quality and artefacts . 34
6.2 Correctness . 36
6.3 Performance and optimization . 38

7 Discussion 41

7.1 Future work . 43

8 Conclusion 45

A Rendered images 47

1 Introduction

Realistic real-time illumination has been a popular �eld of research in computer
graphics and games for a long time. One large subset of real-time rendering
techniques are dedicated to providing realistic local illumination. There are also
techniques that try to model various aspects of global illumination. Some of
these focus on for example di�use indirect lighting or specular re�ections.

Unfortunately the nature of global illumination makes it computationally
di�cult to achieve in real-time. As such it is common for techniques targeted at
real-time applications to use rather crude approximations or to rely on prepro-
cessing. One problem with techniques relying on preprocessing is that they are
usually static. The introduction of dynamic changes of the environment would
require the preprocessing to be redone in order to retain correct illumination.

Light propagation volumes is a technique which approximates global illumi-
nation, speci�cally di�use indirect lighting, without any preprocessing stage, in
real-time[10]. In practice this means that the technique approximates the e�ect
that light has on the scene after it has been re�ected from di�use surface. The
most prevalent visual result of this is light bleeding. The technique relies on stor-
ing a representation of the light in each part of the scene in a uniform grid. It
is then iteratively propagated throughout the scene.

While the light propagation volumes technique does run in real-time the
uniform grid representation does limit the scalability. In order to achieve a
more detailed and accurate result, the grid resolution would have to be increased.
Unfortunately this also means that it would require more iterations to propagate
the light throughout the scene. Such a high resolution representation would also
be wasteful in any part of the scene which has no or relatively uniform geometry.

Many of the available implementations of the light propagation volumes
technique use a single directional light source. This e�ciently models for example
sun light, but it not suited for local light sources. Such are better represented
using point light sources.

This master thesis project investigates whether a representation using full
octrees1 instead of a uniform grid will allow for more e�cient and scalable
technique. The motivation for doing so is that an octree could allow for light to
propagate further using fewer iterations due to the varying element sizes. The
project also explores the possibility of using multiple fully dynamic point light
sources instead of a single directional light source.

The project will essentially be an extension on top of the original light prop-
agation volumes technique. It will incorporate omnidirectional point lights as
the primary light sources and a dense octree implementation as the data struc-
ture. An implementation of light propagation volumes featuring omnidirectional
point lights will be used as a baseline for comparison with the octree implemen-
tation. The visual quality and performance of the octree implementation can
then be compared to this baseline version in order to evaluate whether or not
it is an improvement.

The purpose of this thesis is to propose a method for using octrees as the
underlying data structure in the light propagation volumes technique. It also
examines the resulting di�erences of using such a structure compared to the

1A full octree is an octree where all possible nodes are allocated. This is explained further

in section 4.2.

1

original technique. Finally, it will verify whether or not the technique is suitable
to be used with dynamic point light sources in real-time applications.

It is not a focus in this project to optimize all parts of the resulting imple-
mentation but rather just the octree speci�c code. Everything else has already
been shown to be feasible to implement in real-time by the original paper[10].

Outline A survey of previous work and related techniques is presented in
section 2 in order to place this project into perspective. Section 3 presents a
fairly detailed insight in the related concepts of spherical harmonics and light
propagation volumes. Afterwards, in section 4, a description of the resulting
method is presented including the theory on how it works. In section 5 the
actual implementation and its capabilities are described. The results and an
analysis of them is later presented in section 6. Then follows a discussion of
the project with focus on the results and possible future research in section 7.
Finally a conclusion including a quick summary of the entire project is presented
in section 8.

2

2 Previous work

There has been much research in the �eld of global illumination in computer
graphics and much of it is very recent. This generally includes not only purely
real-time techniques but also static or semi-static solutions based on precompu-
tation steps as well as entirely o�ine solutions. This thesis is however focused
on real-time applications and as a result, o�ine solutions will only be mentioned
brie�y while real-time techniques will be considered, presented and compared
in further detail in this section.

Light propagation volumes Light propagation volumes is the underlying
technique that this project extends upon. The technique was �rst developed by
Kaplanyan for Crytek[10]. It makes it possible to render scenes with realistic
di�use indirect lighting in real-time on current generation personal computers
and gaming consoles. This process is performed in four distinct steps. The scene
is �rst rendered from each light source into re�ective shadow maps. The texels
in these re�ective shadow maps are then used to represent virtual point lights.
After the re�ective shadow maps have been created the contributions of the
virtual point lights are injected into a uniform three dimensional grid. The grid
encodes light color, intensity and direction as two-band spherical harmonics.
After the injection stage these initial values in the grid are then propagated
throughout the rest of the grid using an iterative process. In each iteration each
grid element receives a contribution from each of the grid elements immediately
surrounding it. The accumulated result of all the propagation iterations is then
sampled during rendering to illuminate the �nal image.

A more detailed understanding of this process is essential to fully under-
stand the contributions of this project. Therefore the light propagation volumes
technique will be presented in further detail in section 3.2.

Cascaded light propagation volumes The cascaded light propagation vol-
umes technique is an extension of the original light propagation volumes tech-
nique. It was developed and published by Kaplanyan who also wrote the paper
for the original technique as well as Dachsbacher[11]. This technique contains
all of the steps from the original technique. It replaces the single uniform grid
with multiple such grids with di�erent density, positioned relative to the camera.
These grids all have the same resolution, but because of the di�erent densities
they have di�erent extents in the scene. A high density grid is used close to the
camera providing high detail close to the viewer while gradually lower density
grids are used further away from the camera.

The data structure used in cascading light propagation volumes is in some
ways very similar to that of the octree light propagation volumes which is pre-
sented in section 4.2. Both use multiple overlapping grids. The di�erence is that
cascaded light propagation volumes uses a small preset of grids which all have
the same resolution. Octree light propagation volumes uses more volumes but
with di�erent resolutions. In cascaded light propagation volumes the di�erent
grids also cover a di�erently sized area in world space while octree light propaga-
tion volume grids all span the same volume, no matter their resolution. Finally,
cascaded light propagation volumes do not need any separate grid to maintain
the structure of the di�erent grids.

3

Subsurface light propagation volumes Subsurface light propagation vol-
umes is another technique derived from the original light propagation volumes
technique. Unlike the other techniques this one is intended to approximate the
subsurface scattering of light inside solid objects rather then the indirect lighting
in regular scenes. The technique was developed by Børlum et al.[19] Apart from
adapting light propagation volumes to represent subsurface scattered light, the
paper also introduces a new method for injecting the contribution of point light
sources into a light propagation volume. This new injection method depends on
various attributes of the render-to-texture cameras used to create the re�ective
shadow maps during the �rst step of the technique. This is described in more
detail in section 3.3.

Re�ective shadow maps Re�ective shadow maps is a technique that ex-
tends regular shadow mapping. Each texel in the resulting shadow maps store
additional information. This allows the texel to be considered as an indepen-
dent indirect light source. While a traditional shadow map would usually only
store the depth value a re�ective shadow map also stores the surface normal,
the re�ected light �ux and the world position. These re�ective shadow maps are
then evaluated on the �y during rendering to contribute to the indirect lighting
of the scene. The technique was developed by Dachsbacher and Stamminger[7].
Re�ective shadow maps are also used in the light propagation volumes tech-
nique and in the techniques derived from it. When used with light propagation
volumes however, instead of being evaluated on the �y during rendering, all
the re�ective shadow maps are injected into the light propagation volume after
which they are no longer used.

Spherical harmonics lighting Spherical harmonics is a mathematical con-
struct which de�nes an orthonormal basis over the sphere. The basis functions
are complex in nature but can be transformed into a real valued basis. These
functions are commonly indexed in two dimensions, one of which is usually re-
ferred to as the band index. Low values of the band index correspond to the
low frequency basis functions. Among the early uses of low order spherical har-
monics in real-time computer graphics was by Sloan et al[21]. Spherical har-
monics has since then been established as a powerful tool in real-time computer
graphics[9, 20]. In the light propagation volumes technique the grid stores light
�ux in the form of low order spherical harmonics. Speci�cally, only the �rst two
bands of spherical harmonics are used. The theory required to cover such use of
spherical harmonics is presented in section 3.1.

Interactive indirect illumination using voxel cone tracing The inter-
active indirect illumination using voxel cone tracing is another alternative for
real-time indirect illumination. It was developed independently from light prop-
agation volumes but still relies on the idea of injecting re�ected light into a grid.
Unlike the light propagation volumes technique it does not propagate the light
in the grid but rather performs a gathering procedure during rendering using
cone tracing. The technique achieves real-time performance in complex scenes.
Unlike traditional light propagation volumes it is also designed to support glossy
indirect lighting as well, not only di�use indirect lighting. Similarly to the tech-
nique presented in this thesis it also implements its structure using an octree.

4

It does however use a sparse pointer based octree rather then a full octree. It
was originally developed by Crassin et al[8].

Image space photon mapping As one of several techniques aimed towards
accelerating typically o�ine techniques for use in real-time applications indi-
rect illumination by image space photon mapping does just that for the photon
mapping technique. Image space photon mapping achieves real-time frame rates
on modern hardware in complex dynamic scenes. The technique splits up tradi-
tional photon mapping into di�erent steps. Some are executed on the GPU and
some on the CPU. Both a bounce map and a photon volume is introduced in the
technique. The bounce map is similar to a re�ective shadow map. It is rendered
on the GPU from the space of the light source and stores the photon depth,
color, direction along with some additional information after the �rst bounce.
The photons are then simulated on the CPU until they are absorbed, storing the
incoming photons in the photon volume before each bounce. The photon vol-
umes are then rasterized, scattering the photon contributions in screen space.
The technique was developed by McGuire and Luebke[15]. Image space photon
mapping yields good looking results in real-time but has some camera depen-
dent artefacts and does rely much on CPU processing which may be required
for other tasks.

Incremental instant radiosity Traditional instant radiosity is typically not
fast enough for interactive real-time applications[12]. The derived technique of
incremental instant radiosity provides an algorithm for reusing virtual point
lights generated during one frame in future frames. It also incrementally up-
dates them to ensure that the per-frame computation time is low. This is
enough to achieve real-time frame rates. The technique does not require any
pre-computation and supports dynamic light sources with the limitation that
they must move reasonably smoothly. The geometry causing indirect illumina-
tion must additionally remain static and dynamic objects can not cause any
indirect lighting, but may receive indirect light from static parts of the scene.
The technique was developed by Laine et al[14]. The technique can provide vi-
sually pleasing results in real-time but places several severe limitations on both
the scene geometry itself and the lighting conditions which may not be ideal in
some applications.

Screen space directional occlusion Screen space ambient occlusion is a
technique to approximate ambient occlusion using geometry information avail-
able in screen space. Screen space directional occlusion is an extension of screen
space ambient occlusion which is based on the same principle but allows it to
also approximate one bounce of indirect illumination and directional shadows.
This is done primarily by retaining more information in the per-pixel evaluation
of neighbouring pixels and speci�cally directional information which is usually
discarded when using traditional screen space ambient occlusion. The technique
was developed by Ritschel et al[18]. The technique is relatively fast and does
not add signi�cant computational complexity on top of the simpler ambient
occlusion technique. It does however share the limitation that only on-screen
information can be included. As such it is relatively view-sensitive.

5

Static or semi-static global illumination techniques There are many
variations of techniques for global illumination that rely either on an o�ine pre-
computation step or on additional artist provided resources. The most common
and straight forward of these is probably ambient light which is just a single
uniform and undirected light color and intensity which a�ects everything in the
scene equally[1]. While such a solution is essentially free with regard to compu-
tational complexity and memory use it does not accurately model the indirect
lighting of a typical scene. A common yet simple improvement is environment
mapping which is a set of techniques relying on using a static pre-computed map,
usually a texture, to store the light coming into the scene from each direction[2].
Such techniques have the inherent limitation that their contribution is view-
independent. As such it is only appropriate for lighting contributions from very
distant sources.

Other, slightly more advanced techniques for precomputed global illumi-
nation include various forms of precomputed lighting, irradiance and occlusion
techniques. These techniques rely on precomputed lighting information stored in
maps or volumes and sampled during rendering of the scene. The precomputed
values may for example have been generated using an entirely o�ine technique
for global illumination.[3]

O�ine global illumination techniques It is common for the o�ine global
illumination techniques to be able to reach a much higher level of accuracy
than real-time techniques. While these techniques generally do not achieve real-
time performance on modern hardware their results can be saved and reused in
static environments. The traditional techniques worth mentioning are radiosity
and ray tracing. Radiosity is designed to simulate di�use interre�ections be-
tween objects while ray tracing specializes in glossy re�ections, refraction and
shadows.[3]

Conclusion After surveying the state of techniques enabling global illumina-
tion for real-time applications there are several viable techniques. Some of the
techniques are closely related to each other or even extend each other. The rel-
evant such relationships are illustrated in �gure 1. Each of them have their own
unique limitations. For this project the light propagation volumes technique was
chosen as a starting point. This is due to its promising real-time characteristics
and for not being restricted to either static scenes or screen space information.
The cascaded light propagation volumes technique already extends light propa-
gation volumes and does to a certain extent address some of the issues that this
project sets out to investigate. Cascaded light propagation volumes has been
designed to exclusively prioritize spatial proximity to the viewer when it comes
to the quality and accuracy of the technique. This project will however explore
some other possibilities, speci�cally proximity to scene geometry and re�ected
indirect light instead.

6

Screen Space Directional Occlusion

Incremental Instant Radiosity

Cascaded LPVs

Reflective Shadow Maps Spherical Harmonics Lighting

Light Propagation Volumes

Subsurface LPVs

Octree LPVs

Image Space Photon Mapping

Voxel Cone Tracing

Figure 1: Illustration of the relation between the relevant presented techniques
for real-time indirect illumination. Speci�c focus has been devoted to the re-
lations between those techniques that lead up to this project. The techniques
in the hierarchy to the left are closely related or extend each other while those
listed on the right have no obvious relation to other techniques in the �gure.

7

3 Real-time global illumination

While there are many possible paths towards approximating global illumination
in real-time, as indicated by section 2, this thesis will focus entirely on extending
the light propagation volumes technique. This section will explain how light
propagation volumes work to the extent required to understand the extensions
that were developed as part of this project. These extensions are in turn covered
in section 4. Light propagation volumes rely heavily on low order spherical
harmonics for representing light. As such, an introduction of spherical harmonics
will be given prior to the description of light propagation volumes themselves.

3.1 Spherical harmonics

It does not fall within the scope of this report to provide the complete in-
depth theory of spherical harmonics. This section will instead present a short
introduction with focus on the properties of spherical harmonics that are used
in the light propagation volumes technique and consequently in the technique
developed in this master thesis project. Additional background on spherical
harmonics can be found in papers devoted to them[4, 20, 9] and in papers which
use them as part of a technique[21, 17].

Spherical harmonics are a set of mathematical functions. Together they form
an orthonormal basis. The basis spans a function space, speci�cally the space
of functions de�ned over the unit sphere. There is an in�nite amount of these
basis functions[20, 9].

The spherical harmonics basis functions are divided into so called frequency
bands where each band corresponds to a frequency higher than that of the
band before it. The �rst band consists of a single constant function, the second
band consists of three linear functions, the third band consists of �ve quadratic
functions and so on[20].

Spherical harmonics are based on the associated Legendre polynomials which
in turn are solutions to the associated Legendre di�erential equation. These
associated Legendre polynomials are themselves far outside the scope of this
report and will simply be denoted Pml (x) where the band index l is a positive
integer and m = −l, . . . , l. The spherical harmonics basis functions are then
de�ned as[21]:

Y ml (θ, ϕ) = Km
l e

imϕP
|m|
l (cos θ) (1)

Here, Km
l is just a normalization constant:

Km
l =

√
(2l + 1)(l − |m|)!

4π(l + |m|)!

The arguments θ and ϕ are the spherical coordinates that correspond to a
single point s on the unit sphere. Such a point can also be written as a triplet
of Cartesian coordinates (x, y, z) with

√
x2 + y2 + z2 = 1. They are related to

each other according to:

s = (x, y, z) = (sin θ cosϕ, sin θ sinϕ, cos θ) (2)

Equation 1 will generally result in complex values while techniques in com-
puter graphics usually need to represent only real values. As a result the equation

8

has been derived into a real valued form as well. Each complex basis function
Y ml corresponds to a real valued basis function yml :

yml (θ, ϕ) =


√

2 Re{Y ml (θ, ϕ)} m > 0√
2 Im{Y ml (θ, ϕ)} m < 0

Y 0
l (θ, ϕ) m = 0

=


√

2Km
l cos (mϕ)Pml (cos θ) m > 0√

2Km
l sin (−mϕ)P−ml (cos θ) m < 0

K0
l P

0
l (cos θ) m = 0

Due to the involvement of the associated Legendre polynomials Pml in these
basis functions, the polynomial order of each basis function is equal to the band
index l. This is why the �rst band l = 0 is just a constant value, the second
band l = 1 consists of linear functions and so on. Each band also consists of
2l + 1 basis functions which means that there are a total of n2 basis functions
on the �rst n bands l = 0, . . . , n− 1.

The spherical harmonics basis functions can be used to represent spherical
functions. Those are functions that are de�ned on the unit sphere and can be
evaluated for f(s) where s is a point on the unit sphere according to equation
2. The more bands that are used to represent a function the more accurate
that representation will be. It is not possible in practice to use an exact repre-
sentation for a general function due to the in�nite amount of basis functions.
However, since the bands correspond to increasing frequencies it is possible to
represent low frequency information reasonably accurately. This uses only the
basis functions in the �rst n bands, where the value of n depends on the appli-
cation. A representation like this is well suited for di�use lighting and is exactly
what is used in the light propagation volumes technique and in this thesis. In
light propagation volumes a value of n = 2 is used. It thus uses a total of four
basis functions[21].

The four basis functions for n = 2 expressed using Cartesian coordinates
are[20]:

y00(s) =
1

2
√
π

y−11 (s) = −
√

3

2
√
π
y

y01(s) =

√
3

2
√
π
z

y11(s) = −
√

3

2
√
π
x (3)

For each function f(s) the spherical harmonics representation that best ap-
proximates it can be determined. For each basis function with l < n, a coe�cient
cml is calculated. It indicates how well that basis function corresponds to that
basis function. This means that the spherical harmonics representation for a
function f(s) using n bands is a set of n2 such coe�cients, one for each basis
function. These coe�cients are calculated as the integral of the product between
the approximated function f(s) and the currently evaluated basis function yml (s)

9

over the unit sphere S:

cml =

∫
s∈S

f(s)yml (s)ds (4)

This operation is a projection. In order to reconstruct the approximated function
f̃(s) or to evaluate it at a certain point s all of the basis functions are scaled by
their corresponding coe�cients and then summed:

f̃(s) =

n−1∑
l=0

l∑
m=−l

cml y
m
l (s) (5)

So called zonal harmonics are spherical harmonics projections of functions
which are rotationally symmetric around an axis. In each band among the spher-
ical harmonics basis functions there is such a basis function that has rotational
symmetry around the Z axis. These are the ones with the index m = 0 in each
band. One property of zonal harmonics is that they only have one non-zero coef-
�cient in each band. Zonal harmonics are also particularly simple to rotate[20].

An example of a function which will prove to be very useful is the clamped
cosine lobe function. Because of the properties hinted above, it follows logically
to choose a clamped cosine lobe in the direction of the Z axis. The function
could be described as:

f(θ, ϕ) = max(cos θ, 0)

Since f(θ, ϕ) in this case is clearly invariant of the ϕ argument and only relies
on θ, it is rotationally symmetric around the Z axis. It thus lends itself to
a convenient zonal harmonics representation. Projecting this function into a
spherical harmonics representation with n = 2 according to equation 4 gives the

four coe�cients
(
c00, c

−1
1 , c01, c

1
1

)
=
(√

π
2 , 0,

√
π
3 , 0
)
. Here the factor c00 =

√
π
2 is

the non-zero coe�cient of the �rst band while c01 =
√

π
3 is the only non-zero

coe�cient of the second band.
The above representation is convenient and useful as long as it is su�cient

to only represent clamped cosine lobes that are directed along the Z axis. This
is however not enough for the light propagation volumes technique. As hinted
earlier it is particularly convenient to rotate zonal harmonics functions such as
the clamped cosine lobe above. Using rotation it is possible to extend the above
result into a general spherical harmonics representation of a clamped cosine lobe
in any arbitrary direction.

The method for rotating a general spherical harmonic is typically to use a
transformation matrix of size n2×n2 where n is the amount of bands included in
the representation. For the two �rst bands used in this case, that would result in
a 4× 4 matrix. As previously mentioned, rotation is more convenient for zonal
harmonics. In order to rotate a zonal harmonic representation of a function,
where the non-zero coe�cient of band l is zl, into the direction d, the spherical
harmonic coe�cients of the rotated zonal harmonic are given by:

fml =

√
4π

2l + 1
zly

m
l (d) (6)

The clamped cosine lobe pointing along the Z axis with spherical harmonic

coe�cients
(√

π
2 , 0,

√
π
3 , 0
)
would then have z0 =

√
π
2 and z1 =

√
π
3 . Insert-

ing these values into equation 6 and setting d = (x, y, z) gives the spherical

10

harmonics representation for a clamped cosine lobe pointing in the direction d:

f00 =

√
π

2

f−11 =

√
π

3
y

f01 =

√
π

3
z

f11 =

√
π

3
x (7)

A very important property of spherical harmonics is that they can be used
to e�ciently approximate the integral of a product between two functions over
the sphere. This is done using just the dot product of the spherical harmonics
coe�cient vectors for those functions. Here the two functions are f(s) and g(s)
and the coe�cients of their spherical harmonics approximations are cml and dml ,
respectively. ∫

S

f(s)g(s)ds ≈
∫
S

f̃(s)g̃(s)ds =

n∑
l=0

l∑
m=−l

cml · dml (8)

A convenient operation for adding two spherical harmonic representations
can also be de�ned. This is as simple as performing component-wise addition
on all the coe�cients.

It is especially convenient in computer graphics that the two lowest bands
of a spherical harmonics representation consists of exactly four coe�cients since
that lends itself well to storage in regular four component vectors and RGBA
color texels. This also allows for integrals on the form presented in equation 8
to be e�ciently evaluated using the traditional dot product for these vectors.

3.2 Light propagation volumes

Light propagation volumes is, as already mentioned in section 2, a technique for
approximating indirect di�use lighting in a scene. What makes this technique
interesting is that it is fast enough to run at real-time frame rates on current
hardware. This section will give an introduction to the technique with details on
how it works. The focus will be on the areas which are later modi�ed and used in
the implementation using octrees, which is covered in section 4. Additional detail
on the technique can be found in the original papers of the light propagation
volumes technique by [10], as well as the paper on cascaded light propagation
volumes by [11].

The technique is divided into four distinct steps. Every step is executed, in
order, each frame. This enables support for fully dynamic scenes and lighting.
These steps will be described in detail later but a short summary of the tasks
performed in each step is as follows:

Virtual point light creation - The �rst step consists of gathering informa-
tion about geometry and re�ected light. This is done from the viewpoint
of the light sources. Each fragment that is visible from the viewpoint of a
light source is considered as a virtual point light responsible for emitting
the indirect light in the scene.

11

Light injection - The contribution from the virtual point lights in the previous
step is injected into a three dimensional discrete grid. This grid covers the
entire scene. The light is injected into the grid position nearest to the
virtual point light.

Propagation - The light that was injected into the grid is then iteratively
propagated through the grid. In each iteration the light in each grid ele-
ment is blurred to all adjacent elements.

Rendering - After the desired amount of iterations in the propagation step
have been performed, the resulting light distribution is sampled. For each
rendered fragment the contribution of indirect lighting is evaluated using
the light distribution in the grid.

The technique essentially provides the indirect lighting corresponding to the
light's �rst di�use surface bounce. The cascaded light propagation volumes tech-
nique additionally extends this technique in several ways. Some of these ways
have already been mentioned in section 2. Apart from those it also introduces
fuzzy indirect occlusion as well as support for multiple indirect light bounces[11].
Both of these additions rely on the use of a new, separate, three dimensional
grid. This grid contains a discrete representation of the solid geometry in the
scene instead of the lighting. This can then be sampled and taken into consider-
ation during the propagation. That way the light can take scene geometry into
account.

3.2.1 Virtual point light creation

Virtual point light sources are, unlike regular light sources, not part of the scene
itself. However, they are still taken into consideration during rendering of the
scene. In the light propagation volumes technique they are used to represent the
light that is being re�ected from di�use surfaces. Every fragment that is directly
hit by a regular light source is considered a virtual point light which emits light
on its own. In a sense, each surface that is illuminated by a light source will
then turn into an area light source. It is covered in many small virtual point
lights.

The virtual point lights in the technique are represented as texels in a re-
�ective shadow map. These store the distance from the original light source,
the surface normal and the re�ected light color and intensity. Knowledge of the
location and the view of the original light source can then be used to position
the virtual point light in world space. This allows the contribution to the rest
of the scene to be evaluated.

Details of shadow mapping and re�ective shadow mapping is outside the
scope of this report, but is covered in [5, 7]. In short, shadow mapping renders the
scene to a bu�er using the render-to-texture capabilities of the graphics system.
This rendering is done from the viewpoint of the light source. This is done prior
to rendering the scene onto the screen from the viewer's camera. The scene is
however not rendered in the traditional sense. Instead it writes the depth value,
or the distance, from the light source into the bu�er. This information can then
be sampled during the rendering to the screen to determine whether a certain
fragment is being directly lit by a light source or not. Re�ective shadow mapping

12

writes additional information to this render-to-texture bu�er. It especially stores
the normal of the surface and the color of the re�ected light.

As mentioned before, in the light propagation volumes technique each texel
in such a re�ective shadow map represents a small virtual point light, emitting
its own light that should contribute to the scene. These re�ective shadow maps
are generated for each light source in the scene. It is done by utilizing multiple
render passes. The re�ective shadow maps are then used by subsequent steps of
the technique. The next step is to inject the contribution of each of these virtual
point lights into the three dimensional grid.

3.2.2 Light injection

At this point, there is a set of re�ective shadow maps, originating from each
light source in the scene. The information in the texels of these maps, along
with information2 about the original light source, is then used to pinpoint the
world space position of each virtual point light. The light color, intensity and
direction of the lights is also available in the re�ective shadow maps.

The next step is to add the contributions of each virtual point light into a
separate three dimensional grid. This grid is what is known as the light prop-
agation volume. Its size is usually uniform in each dimension, n × n × n. Each
element in this grid is a set of three vectors. Each vector has four components,
representing the four coe�cients of a two-band spherical harmonics representa-
tion. One vector stores the coe�cients corresponding to the red color channel,
one for the green and one for the blue.

Each element in the grid corresponds to a cuboid volume in the scene. This
volume depends on the position of the element within the grid and on the ex-
tents of the grid itself. Given that information, each world space position can
be mapped to an unambiguous grid element. This is assuming it is within the
extents spanned by the grid. This is used in the light propagation volumes tech-
nique to map each and every virtual point light into their corresponding grid
element. The details of this mapping are available in [10, 11]. The outgoing
light distribution from each virtual point light is then projected onto a spheri-
cal harmonics representation for each color channel. These can then simply be
injected into the appropriate grid element using component-wise addition of the
spherical harmonics coe�cient vectors.

The projection of a virtual point light into spherical harmonics coordinates
is a two step process. The directional distribution of re�ected light from a di�use
surface is here represented by a clamped cosine lobe around the normal of the
surface. Given this normal, the spherical harmonics coe�cients c for such a
function is given by equation 7. This will however not take the light intensity
or color into account, but just the direction of the re�ected light. In order to
properly preserve intensity and color, each resulting vector is scaled by the light
�ux Φ. This �ux depends on the re�ected light intensity I and the albedo A
of the corresponding color channel. The �ux also needs to be scaled by the so
called texel weight w. This gives Φ = IAw. The �nal vector injected into the
grid is then given by v = Φc.

The texel weight w is an estimate of the ratio between the area of one texel
of the re�ective shadow map srsm and the area of the cut of a single grid element

2This information includes the position, orientation, �eld of view etc. of the light source.

13

sgrid. This gives

w =
srsm
sgrid

In the case that the re�ective shadow map is generated using an orthographic
projection this can be calculated using a simpler approach. Assuming the extents
of the re�ective shadow map is approximately the same as the extent of the grid
in that plane, then w is approximately the same as the quota between their
respective texel counts. If the re�ective shadow map is trsm = m×m texels and
a cut of the grid is tgrid = n× n, then the following applies:

w =
tgrid
trsm

(9)

3.2.3 Propagation

The injection step ensures that there is lighting data in the grid elements that
contain directly lit geometry. Every grid element that does not contain any
directly lit geometry will contain zeroes. The propagation step lets the light
propagate or spread into these zeroed grid elements. This is done using an
iterative process. In each iteration every grid element is, in a sense, blurred with
its neighbouring elements in the axial directions. This blurring function actually
involves both evaluating the spherical harmonics function of a grid element and
then re-projecting it into the adjacent grid element as a new virtual point light.

During each iteration, every grid element will be propagated to the six neigh-
bouring grid elements in the axial directions using the blurring algorithm men-
tioned above. The propagation from a grid element A = (a00, a

−1
1 , a01, a

1
1) to a

neighbouring grid element B = (b00, b
−1
1 , b01, b

1
1) actually consists of �ve spherical

harmonics evaluations and projections. The spherical harmonic of A is evaluated
in the direction of each of the outwards faces of B3. They are evaluated accord-
ing to equation 5 where the basis functions are de�ned according to equation
3.

The basis functions are evaluated in the directions from the center of A
towards each face of B as shown in �gure 2, left. Each such evaluation gives a
single valued result. This result is then scaled by the solid angle occupied by
that face, as seen from the center of A, which is shown in �gure 2, center. This
is in turn used to scale the coe�cients of a clamped cosine lobe function. The
clamped cosine lobe is directed towards the current face, seen from the center
of B, as shown in �gure 2, right. The summed coe�cients of every such scaled
cosine lobe is then stored in B.

Another way of looking at it is that the coe�cients of each grid element A
will be the sum of 6 · 5 = 30 scaled clamped cosine lobe projections. Each of the
six adjacent grid elements has �ve projections.

Snapshots of the grid contents after each iteration can be denoted Si where
i = 0, . . . , k. The variable i denotes the i:th iteration, in the range 1, . . . , k. S0

is the initial light distribution after injection. The upper limit k is the total
amount of iterations performed during the propagation step.

The iterations are performed in such a way that the contents of Si−1 are used
to generate the contents of Si according to the propagation function explained

3The face facing back towards A is excluded.

14

A B A B A B

1. 2. 3.

Figure 2: The three concepts used during the propagation between two grid
elementsA andB. In reality this is in three dimensions, but the �gure is �attened
to two dimensions for simplicity. The �gure on the left shows the directions in
which the spherical harmonics function of A is evaluated. The �gure in the
center shows the extents for which the solid angle is computed. The �gure on
the right shows the directions used when re-projecting the light.

earlier. Once all k iterations have been performed and all Si are populated then
the �nal light distribution, or the accumulated light, is given by:

SA =

k∑
i=0

Si

An example of some �ctional such snapshots S0, . . . , S4, SA are illustrated in
�gure 3.

3.2.4 Rendering

The �nal stage of the light propagation volumes technique uses the accumulated
light bu�er SA to query the indirect illumination in the scene. This can be done
during the render pass in which the direct lighting is applied. For each rendered
fragment F , the position of that fragment is mapped to its corresponding grid
element. The spherical harmonics coe�cients in that grid element are then sam-
pled and evaluated in the direction of the fragment's negative surface normal
−n. This is illustrated in �gure 4. In order to evaluate the spherical harmonics a
clamped cosine lobe function in the direction of the negative normal −n is pro-
jected into spherical harmonics coordinates. The resulting coe�cients are then
evaluated using equation 8 for each color channel. This yields a set of red, green
and blue color intensities. These intensities are then scaled by the fragment's
surface albedo and an optional scaling coe�cient. Finally the resulting color is
applied to the fragment by adding it with the direct lighting contributions.

3.3 Point light injection

The light injection method described in section 3.2.2 allows for the simpli�ed
calculation of the texel weight w from equation 9. This does however only work
in the case of orthographic projections, where the imagined rays of light are
parallel. Such a projection is well suited for modeling light sources far away,
such as the sun. It is however not well suited for modeling local light sources

15

S0 S1 S2

S3 S4
SA

Figure 3: Snapshots of the light distribution during four iterations and the
resulting �nal light distribution summed together in SA. Initially, from the in-
jection step, there is only a single grid element containing lighting. This is then
propagated throughout the rest of the grid.

n

F

Figure 4: A fragment F with normal n of a rectangular object being rendered.
The grid element to be sampled for this fragment is highlighted with a solid
outline.

16

x

Figure 5: The view angle θ between the image plane normal and the view vector
to a texel.

since the light rays from such a local light source will diverge. A perspective
projection is then better suited. Such a projection does however make the texel
weight dependent on distance and on the angle of the texel from the center. A
texel that represents a surface further away will cover a larger area in world
space. The same goes for a texel that is captured from an angle by not being in
the center of the view.

The paper on subsurface light propagation volumes [19] presents a new
method for injecting the contributions of point light sources into the light prop-
agation volume. That method de�nes the �ux Φ through a texel di�erently than
in the original technique. It uses the solid angle Ω subtended by the texel from
the light source. Speci�cally, the �ux is de�ned as Φ = IAΩ. The solid angle
does in turn depend on the �eld of view of the camera used to create the re�ec-
tive shadow map as well as its resolution. It also uses the view angle θ, which is
the angle between the normal of the imaging plane and the view vector to the
texel. This angle is illustrated in �gure 5.

Assuming that the aspect ratio of the camera that created the re�ective
shadow map is one, the solid angle Ω can be written as:

Ω =
4 cos3 θ tan2 FOV

2

NxNy

In this expression Nx and Ny are the horizontal and vertical resolutions of the
re�ective shadow map, respectively.

17

4 Method

This section starts by introducing some of the methodology used to assess and
evaluate the developed technique. Then follows, in section 4.1, a description
of how related techniques were integrated. This includes the integration of the
light propagation volumes techniques and the handling of omnidirectional light
sources. Finally, in section 4.2, the octree data structure and the resulting tech-
nique are presented in detail.

This project is focused on achieving a practically applicable technique for
indirect illumination. As such, a working implementation of the technique will
be developed and maintained throughout the project. The details of that im-
plementation are presented in section 5.

In order to establish a baseline for the comparison and evaluation of re-
sults an implementation is created, incorporating some of the underlying tech-
niques used in this project. This particularly involves a system implementing the
original light propagation volumes technique, using a scene that can e�ectively
showcase the e�ects of the technique.

The baseline implementation will then be gradually extended with new func-
tionality to support dynamic omnidirectional point lights and octree based light
propagation volumes. This extended implementation is the system described in
section 5.2.

The results from the project will be presented in two forms. The �rst consists
of timing and performance data. The other is that of correctness, mainly through
visual evaluation. If the resulting technique runs in real-time and speci�cally
improves upon some aspects of the original technique while not introducing any
severe visual artefacts then the project is successful.

The quality and any artefacts can conveniently only be visually evaluated. As
such it is a highly individual metric. The basis for comparison in this case is the
original light propagation volumes technique and the cascaded light propaga-
tion volumes technique. Part of the evaluation will be done against the baseline
light propagation volumes implementation which is a part of this project. An-
other part will be the implementation of cascaded light propagation volumes by
NVIDIA from [6].

In particular, the visual assessment of the resulting technique will be focused
on artefacts such as temporal �ickering and discretization of the indirect lighting.

Scene considerations Details of the scene and of how it is set up is outside
the scope of this section and is rather presented in section 5.2. The choice of
scene and what it should contain is however key in order to allow convenient
evaluation of the resulting lighting. The primary scene chosen for this project
is the Sponza Palace Atrium scene from [16]. It is a common choice for global
illumination demonstrations and it allows the global illumination e�ects to show
themselves in a realistic setting.

As a secondary scene for testing purposes a simple cube room with coloured
walls was created. Such a scene allows for a very predictable resulting lighting
and can be used to conveniently con�rm the rendered result with the expected
result.

The lighting is contributed by multiple point light sources inside the scene
itself. This is a contrast to the typical distant directional light, usually from the
sun. Such nearby point light sources are able to really test the dynamic nature

18

and �exibility of the technique. It does however also infer additional challenges
as indicated by section 3.3.

4.1 Integration of existing techniques

Light propagation volumes Based on the available real-time techniques
surveyed in section 2, light propagation volumes is the most promising technique
for this project. The details of the technique itself are presented in section 3.2.

The light propagation volumes are in this application chosen with an extent
su�cient to uniformly cover the entire rendered scene. This ensures that the
indirect illumination will a�ect the entire scene and all objects in it. It also
means that with an unchanged resolution the accuracy of the technique will be
lower then if only a part of the scene had been covered. Fortunately the scenes
in this case are relatively compact, making good use of the storage in the light
propagation volumes.

Due to the power and e�ciency of GPGPU computation in modern hard-
ware, parts of the light propagation volumes technique were implemented using
CUDA. Such computations were chosen to perform the light injection and light
propagation in the place of shaders. Among other things this requires a dif-
ferent approach to light injection then the point based rendering used in the
original papers [10, 11]. It also relies upon e�cient sharing of memory between
the GPGPU processing and the shaders.

Omnidirectional light sources An omnidirectional light source is a light
source which emits light in all directions around itself. Shadow mapping, and
by extension re�ective shadow mapping, can be done for such light sources in
a variety of ways. The most intuitive such way is to generate multiple separate
shadow maps for each light source by performing multiple render passes. Assum-
ing these shadow maps are generated using a �eld of view of 90◦ it requires six
shadow maps for each light source and an equal amount of render passes. While
straightforward, this is a quite performance heavy operation. It is however still
the method chosen for this project due to its simplicity.

The generation of the re�ective shadow maps is then done by using per-
spective projection. A possible way of injecting virtual point lights from such
a re�ective shadow map into the light propagation volumes has already been
presented in section 3.3. That injection method is adopted for this technique as
well.

Propagation schemes While the original paper on light propagation vol-
umes describes a certain algorithm for light propagation for use in the technique,
there are slight variations in di�erent papers and implementations. The propa-
gation scheme detailed in section 3.2 is the one presented in the cascaded light
propagation volumes paper[11]. This is the propagation scheme that is used in
this project. The reason for this, as opposed to using the propagation scheme
associated with traditional light propagation volume, is that it has better the-
oretical coverage in its paper. This is also the propagation scheme used in the
implementation of cascaded light propagation volumes by NVIDIA[6].

The main di�erence between the two archetypes of propagation schemes, the
original one and the one from the cascaded light propagation volumes paper,

19

is that the original one does not evaluate the stored spherical harmonics func-
tion in the direction of each face as was demonstrated in �gure 2. Instead it
only evaluates it in the direction towards the adjacent grid element that it is
propagating to.

The propagation scheme usually only makes itself known by the resulting
shading of surfaces in the scene. This does not allow for convenient veri�ca-
tion of the results in a general scene. In order to overcome this limitation the
chosen propagation scheme, along with several alternative variations of it, were
simulated in a non-real-time environment.

In this project, such an environment is implemented in a propagation sim-
ulator. Details of this simulator are provided in section 5.1. This is used to
verify that the implemented propagation scheme can produce a realistic light
distribution, not only along the geometry of a particular scene, but in general.

While the original light propagation volumes technique does not consider
any indirect occlusion, cascaded light propagation volumes do. As brie�y ex-
plained in section 3.2, this relies on maintaining a separate grid, representing
the geometry of the scene. Such a representation was chosen to be included in
this project as well since it provides a more realistic resulting lighting.

4.2 Octree light propagation volumes

This section covers both the representation of the octree data structure itself
and how it is used to facilitate light propagation. There are essentially two
important parts of the octree data structure. First and foremost are the octree
levels themselves. These store the actual data, but have no information about the
current structure of the octree. Then there is the index volume. It complements
the octree levels by keeping track of how to index the octree levels and what
structure the octree currently has.

Octree representation An octree is a tree based spartial partitioning data
structure. It is a tree with a dedicated root node and where each node except
the leaf nodes have exactly eight children. The root node represents, or covers,
the entire space encompassed by the octree. Each of its children then covers
one eighth of that space and so on. This continues recursively either until a
certain depth is reached, the volume covered by a leaf node falls below a certain
threshold or the contents of that volume ful�l some condition.

There are several ways to represent and manage an octree. One possible way
to categorize them would be into pointer-based octrees and pointer-less octrees.
In a pointer-based octree each node typically contains eight pointers, one for
each possible child node. Such octrees are usually conservative with regard to
memory usage but are prone to ine�cient caching behaviour. Pointer-less octrees
typically store nodes linearly in memory and relies upon some deterministic
indexing or search pattern to access nodes in a tree. Each of these categories of
octrees in turn have additional sub-categories.

One particular type of a pointer-less octree representation is a full octree[13].
A full octree, is required to allocate memory for all nodes that could possibly
exist down to a pre-de�ned level. By ensuring that this memory is laid out
linearly, it is possible to compute the index or address for any node in the tree.
Such a representation is highly ine�cient with regard to memory usage if the

20

SceneLevel 0Level 1Level 2

Figure 6: Two dimensional illustration of how levels of a full octree represented
by multiple textures could correspond to certain areas of a scene. The high-
lighted grid elements are the ones that contain parts of the rectangle from the
scene.

represented data is sparse. It is however suitable in cases where the larger nodes
represent a more coarse representation of the data.

A full octree can be thought of as something similar to a mipmapping struc-
ture of a three dimensional texture. It can also be represented in memory, both
on the GPU and the CPU as a set of such textures of di�erent resolutions. This
allows especially the GPU to optimize memory access to it as if it was a regular
texture. An example of this in two dimensions is shown in �gure 6.

Because of the ease of use and the very straightforward representation on
the GPU a full octree representation has been chosen to replace the light prop-
agation volumes from the original technique. This imposes an additional cost in
GPU memory but has the bene�t that each individual level of the octree is just
a uniform grid which is relatively easy to work with. There will essentially be
several overlapping light propagation volumes of di�erent resolutions covering
the same scene.

In order to simplify the description of these octrees a basic notation is pro-
posed. An octree is assigned a size, or resolution n, which should be a power
of two n = 21, 22, Given an octree that corresponds to a n × n × n light
propagation volume, the highest resolution level of that octree also has the size
n × n × n. This level is the �rst level, or level i = 0. There are a total of
l = log2 n + 1 levels in such an octree, i = 0, . . . , l − 1. Since every level of the
octree is a three dimensional grid it can be indexed using three indices, x̂, ŷ
and ẑ. Along with a level index i in which these indices are used they uniquely
denote a single element in the octree. The indices are de�ned within the range
x̂, ŷ, ẑ ∈ [0, . . . , n2i]. The notation Oi(x̂, ŷ, ẑ) denotes the grid element on octree
level i at (x̂, ŷ, ẑ).

In addition to the data storage levels themselves the technique also needs
a way to know which level of the octree to sample for each world position. In
the original technique it was straightforward to map a world position to its
corresponding grid element according to the description in section 3.2.2. In the
full octree representation one single position in world space maps to multiple
grid elements in the octree, one in each level of the tree. It will only make sense
to use one of these for the computations.

As a complement to the full octree representation a separate index volume
can be introduced. The index volume would store integer indices instead of
spherical harmonics. This volume is denoted I. It could be represented as just

21

Level 0 Level 1 Level 2

00

0

0

11

1

1

1

1

2

22

2

2

2

Resulting samplingIndex volume

Figure 7: A two dimensional slice of a �attened index volume, three levels of a
full octree and the resulting sampling.

another three dimensional structure of the same size n as O0. Unfortunately,
such a representation requires some quite ine�cient operations to be added
to the propagation step. In order to avoid this, a hierarchy of such structures
can be used instead. These are laid out in the same way as the data storage
structures themselves and can be denoted Ii where i = 0, . . . , l − 1, just as for
the data itself. It is also indexed using the same coordinates (x, y, z) as the data.
Each element in the index volume is an integer index Ii(x, y, z) = 0, . . . , l − 1,
originally initialized to l − 1. This index is the number of the octree level to
sample for a particular volume in world space. It will be populated with values
during several of the steps performed throughout the technique. Details of this
will follow later. During the sampling, the world position is then mapped to an
element in the index volume. The value in the index volume is then used to
do a second mapping into the correct octree level. The complication with this
representation is that there are l index volume elements that could be picked
for each world space position, one from each level i. To solve that the element
containing the minimum value is used.

An index volume I with the levels Ii, i = 0, . . . , l − 1 where I0 has size
n× n× n is considered to have size n. It can be indexed using the coordinates
(x, y, z) where x, y, z ∈ [0, . . . , n− 1] according to:

I(x, y, z) = min
i
Ii

(x
2i
,
y

2i
,
z

2i

)
The resulting sampling in the octree corresponds toOI(x,y,z)(

x
2I(x,y,z) ,

y
2I(x,y,z) ,

z
2I(x,y,z)).

This is illustrated, using a �at visualization of the index volume, in �gure 7. Such
a sampling is additionally given the simpli�ed notation:

S(x, y, z) = OI(x,y,z)(
x

2I(x,y,z)
,

y

2I(x,y,z)
,

z

2I(x,y,z)
) (10)

Octree light propagation volumes With the proposed octree representa-
tion there would be one such octree containing the lighting distribution. Each
element in each level of the octree would contain a set of three spherical har-
monics vectors, one for each color channel, just as in the original technique. It

22

would also be possible to extend the technique by adding an equivalent octree
structure to be used for occlusion that works in the same way as in the cascaded
light propagation volumes technique.

There are several possible ways to use the proposed octree structure to re-
place a light propagation volume. In this project it was chosen that the prop-
agation of the injected light should be performed individually on each level of
the octree. This allows the propagation scheme to be used almost without any
modi�cations in the octree representation. On �rst sight this may seem wasteful
compared to just propagating on the highest resolution level, as in the original
technique. However, the elements of the other levels in the octree cover a larger
volume in world space. As a result the light on those levels will propagate fur-
ther in fewer iterations. This allows the more detailed levels of the octree to be
used to light the parts of the scene close to where the light was �rst injected.
This will often be the areas where that light still has high enough intensity to
be clearly visible. On the other hand, parts of the scene further away from this
re�ected light are unlikely to be hit by much indirect lighting. Because of that,
those parts can be safely lit using a more coarse approximation of the indirect
lighting. This is the main idea explored in this project.

The same four steps that were performed in the original technique would
need to be extended to work correctly for the new octree representation. Luckily
the �rst step, the creation of the re�ective shadow maps, is already completely
independent of the actual light propagation volume. As such it does not have
to be changed at all. The other three steps do however need to be extended
accordingly.

Light injection and downsampling To perform propagation individually
in each level of the octree it is required that each such level is �rst injected with
light. All the levels of the octree are just variously accurate or coarse-grained
representations of the light distribution. As such there will never be a need for
a more detailed representation than the highest resolution level O0. As a �rst
step the light is thus injected into O0 in the exact same way as in the original
technique.

Injecting the light into O0 leaves the other levels of the octree empty. All
the necessary data can however be derived from the data in O0 since all other
levels are to be less detailed. Each element Oi(x, y, z), i = 1, . . . , l− 1 will cover
exactly the same volume in world space as a speci�c set of eight elements from
Oi−1. These elements are Oi−1([2x, 2x+ 1], [2y, 2y+ 1], [2z, 2z+ 1]). In order to
maintain a uniform range of light intensities in all octree levels, each element
in Oi are populated by simply averaging the corresponding eight elements from
Oi−1:

Oi(x, y, z) =
1

8

2x+1∑
x̂=2x

2y+1∑
ŷ=2y

2z+1∑
ẑ=2z

Oi−1(x̂, ŷ, ẑ) (11)

The process of populating the layers i 6= 0 using the above averaging formula is
called the downsampling step. It is considered as a separate step since the it is
done after, and completely without any interaction with the injection step.

The index volume is updated during both the injection and downsampling
step. During the injection step, for each element O0(x, y, z) that receives a non-
zero contribution it follows that the element in question is close to scene ge-

23

ometry which is di�usely re�ecting light. It is also clear that for these elements
there is no chance of there being an even more accurate representation of the
light in that area since O0 is the highest resolution level. Because of that the
index volume can immediately be assigned zeroes for all those elements in I0,
I0(x, y, z) = 0. This means that after the injection step the index volume will
give 0 for all elements where O0(x, y, z) 6= 0 and l − 1 for all other elements.
Other values are �lled in later.

When it comes to maintaining the index volume during the downsampling
step, each element Oi(x, y, z) has a corresponding element in the index volume
Ii(x, y, z). For each such element Oi(x, y, z) that is assigned a non-zero value
during the downsampling, the index volume is updated to Ii(x, y, z) = i.

Propagation After the injection and downsampling steps the octree contains
an initial distribution of the di�use re�ected light in the scene. The index volume
generally gives lower values close to geometry and higher values in empty areas.
The next task is to allow this initial light distribution to propagate throughout
the scene. As previously mentioned, this is done individually on each level of the
octree in the same way as the single level was propagated in the original tech-
nique. This means that each of Oi, i = 0, . . . , l− 1 is considered as a standalone
light propagation volume of size n

2i . The propagation then proceeds according
to section 3.2. Speci�cally, if the propagation function giving the contribution to
Oi(x, y, z) is denoted P (x, y, z), a scaling factor p called the propagation factor
can be introduced to allow tweaking of the propagated light intensities according
to:

Oi(x, y, z) = p · P (x, y, z)

The amount of iterations performed during the propagation step can be
denoted as k. In the original technique a single light propagation volume of
size n × n × n was used. The worst case in such a light propagation volume
requires at least k = n in order for light injected in one end of the volume to
reach the other end. Luckily the light often dies out before that, so in practice a
lower value can be used. With the octree representation however, right after the
downsampling, Ol−1 will already be propagated since it is just a single 1×1×1
volume. Ol−2 will only need a single iteration in order for light to propagate
through that entire level. In the same way, Oi will need a total of k = 2i − 1
iterations for light to propagate throughout the entire level. Of course, the more
iterations are performed, the more complete O0, which is the most accurate, will
be. However, no matter what value of k is used, there will always be at least one
level, often more, of the octree where the propagation is completed. These are
i = l− 1−blog2 kc, ..., l− 1. The higher detailed levels i = 0, . . . , l− 2−blog2 kc
can only be guaranteed to have a partial coverage of propagated light.

When it comes to the levels where the propagation is guaranteed to provide a
complete coverage there is no good reason to sample from any level but the most
detailed of them. This is i = l−1−blog2 kc. The index volume should re�ect this
and help to ensure it. As such, after k iterations, 0 ≤ I(x, y, z) ≤ l−1−blog2 kc
should hold for any point (x, y, z). For the octree levels that do not guarantee
complete coverage they have one thing in common, they are of higher resolution
than the ones that do. As such, wherever they do provide coverage they should
be used rather then the lower resolution ones.

24

Propagation

Rendering

MergingDownsampling Propagation

VPL Creation

Light injection

Light injection
Traditional LPVs

Octree LPVs

Figure 8: An overview of the steps included in the octree based and the tra-
ditional light propagation volumes technique. The steps are divided into those
that are the same for both techniques and those that need to be implemented
speci�cally for one particular technique.

In order to satisfy the above requirements during the propagation the index
volume is continuously updated. Whenever the propagation scheme adds a non-
zero contribution to an element Oi(x, y, z), the index volume is updated so that
Ii(x, y, z) = i. This simple procedure will ensure that the index volume ful�ls
the requirements above after each completed iteration.

Merging and rendering After the propagation the scene can be rendered
as in the original technique with the exception that the sampling scheme from
equation 10 must be used. This is however not practical since it would require
the rendering pipeline to have access to and to be able to read both all the
levels of the octree Oi and all the levels of the index volume Ii. To avoid this
an additional merge step is introduced. It stores all the sampled values using
S(x, y, z) into a single traditional n×n×n light propagation volume M where:

M(x, y, z) = S(x, y, z)

Once the merge step has been completed the result is just a single light propa-
gation volume that works in the exact same way as in the traditional technique.
This also makes it possible to use the exact same rendering step as in the tra-
ditional technique.

The steps involved in this technique compared to the original technique are
illustrated in �gure 8.

25

5 System description

Two separate systems were implemented as part of this project; one o�ine simu-
lator and one real-time implementation. The simulator implements a number of
variations of the propagation scheme for the octree light propagation volumes
technique. It also visualizes the light distribution throughout the simulation.
The real-time implementation loads and renders a scene using the octree light
propagation volumes technique and allows various options to be enabled, dis-
abled and tweaked during runtime. This o�ers immediate visual feedback of the
changes.

5.1 Light propagation volume simulator

The light propagation volume simulator is a standalone application written in
the Java programming language. It implements all of the steps involved in the
octree light propagation volumes technique, but without the real-time require-
ment. The steps are implemented as separate actions which can be applied
individually in any combination and in any order. The result after each per-
formed step is visualized in the form of a two dimensional grid, representing
a slice through the underlying three dimensional structure. Propagation itera-
tions are applied one by one as well, making it possible to visualize how the
light propagates in discrete steps. There is also an action for performing all the
steps of the algorithm in their natural order, e�ectively running an automated
simulation.

Apart from the size of the octree used in the simulation there are three
main aspects of the simulation that can be customized during runtime. These
are the light injection, propagation and indirect occluders. The light injection
con�guration consists of an editable set of injectors. An injector is an entity that
describes which elements of the octree's �rst level that should be assigned which
values during light injection. They can be of several types such as wall injectors,
single element injectors or �le injectors. For some of these it is possible to specify
a multiplier of the injected light and the direction of the clamped cosine lobe
used to create the injected spherical harmonics.

The propagation is con�gured using one of the implemented propagators
along with a custom propagation scaling factor. In the case where an automated
simulation is used it is also possible to customize the amount of iterations used
during the propagation. There are several propagators implemented. They are
based on various papers and implementations, some of which are more accurate
and realistic than others. The main propagator which has been used the most
throughout the project is the propagator based on NVIDIA's implementation
of cascaded light propagation volumes from [6].

The user interface of the simulator displays three separate grids. One is
used as the source for propagation, one is used as the target and one is the
sum of all propagations so far. The source and target grids alternate between
being the source and the target after each iteration. The elements in the grids
are two dimensional visualizations of spherical harmonic functions for a single
color channel. The visualizations are created by sampling the spherical harmonic
function, according to equation 5, at evenly spaced positions along the z = 0
plane of a unit sphere. These samples are then scaled and rendered as a vertex
of a two dimensional polygon shape. The vertex is positioned a distance from

26

Figure 9: The grid used for visualizing light propagation volumes in the simu-
lator. The light distribution comes from a pair of wall injectors, one on either
side of the grid. It also showcases one of the artefacts of the technique which
will be covered in more detail in section 6.1.

the center of the element equal to the scaled sampled value in the direction that
was used to evaluate the function in the �rst place. One example of a rendered
grid is shown in �gure 9.

The scaling mentioned above can be adjusted by the user during runtime.
The user can also select which level of the octree that should be displayed at
any time during the simulation, or if the merged result should be displayed. The
control panel of the user interface for the simulator is displayed in �gure 10.

The simulator also has the capability of comparing the resulting octree val-
ues Oi(x, y, z) with what they would have been if the propagation had been
performed on O0 and then downsampled. This can be thought of as a simple
error metric. The average and maximum error across all the elements in the
octree are made available in a plot such as the one shown in �gure 11. Both
the absolute and relative errors are calculated using the in�nity norm of the
spherical harmonics vectors.

There is one important di�erence between the simulator compared to the
technique described in section 4. Instead of a hierarchy based index volume with
multiple levels Ii, the simulator only uses a single three dimensional array to
represent the resulting values of I(x, y, z) directly. This is managed in such a way
that it makes no di�erence to the end result but it simpli�es the implementation
of the visualization.

5.2 Real-time implementation

The real-time implementation is another standalone application that, unlike the
simulator from section 5.1 attempts to utilize the available graphics hardware
e�ciently to perform the steps involved in the technique. It also produces an
actual rendered scene in real-time. It is developed using the C++ programming
language and uses the external libraries OpenSceneGraph and osgCompute for
rendering and for GPGPU computations, respectively. It uses the OpenGL shad-

27

Figure 10: The control panel of the simulator.

Figure 11: The error plot of a complete simulation with 16 iterations.

28

ing language to implement the �nal rendering step and for the creation of the
re�ective shadow maps. All other steps of the technique are implemented using
CUDA.

Scene graph structure The OpenSceneGraph library represents scenes us-
ing a scene graph structure. This structure includes not only the geometry itself
but also light sources and cameras. It also contains per-node con�guration of
rendering state such as shader programs and their uniforms. With the addition
of the osgCompute plugin, the scene graph also contains GPGPU computation
nodes. These can be set to execute at certain times in relation to parent and
child nodes.

The scene graph setup used in the real-time implementation of the octree
light propagation volumes technique is not trivial. It is built according to the
structure in �gure 12. The root of the scene graph is the root camera. This is the
camera that ultimately renders the scene to the screen. It renders a single node
called the root node. This root node then splits up into multiple branches. Some
of these branches are just there to provide the HUD or some optional debug
visualizations. Details of those branches will be left out in this description since
they do not a�ect the actual technique. There are however two branches that
are important. The �rst one is the pre-render branch, which is responsible for
performing all the steps of the technique from the creation of the re�ective
shadow maps to the merging step. Note that it does not perform the actual
rendering. That is done in a separate branch, the rendering branch. Both these
branches eventually end up in the main scene node which contains the loaded
Sponza model.

The pre-render branch will be processed using a separate traversal pass be-
fore the rendering to the screen. It contains a chain of osgCompute::Computation
nodes, each of which corresponds to a distinct step in the technique. There is
also an additional such node responsible for clearing and resetting all of the data
structures to their initial state. These computation nodes are chained in reverse
order. They use the osgCompute::Computation::PRERENDER_AFTERCHILDREN

option. This will cause them to be invoked in the correct order during traversal.
After the chain of computation nodes there is a common group node called the
pre-render root node.

The pre-render root node has one child node for each light source in the scene.
These are called the light source root nodes. The light source root nodes each
have six cameras attached to them called the pre-render cameras. The pre-render
cameras are the cameras which are con�gured to render to texture, creating the
re�ective shadow maps. They each have the osg::Camera::PRE_RENDER render
order set. All of these pre-render cameras, from all light sources, then share
one child node called the pre-render scene node. The pre-render scene node
provides some shared con�guration such as shader programs and uniforms that
are needed for creating re�ective shadow maps. The pre-render scene node has
only one child node, the main scene node, which is shared with the render
branch.

The rendering branch starts with a utility node called the real scene node.
This node holds all of the con�guration needed by the �nal rendering pass and
its shader. It has three child nodes, one of which is the main scene node, the
one that is shared with the pre-render branch. The other is a group node called

29

Merge computation

Propagate computation

Downsample computation

Inject computation

Clear computation

Pre−render root node

Real scene node

Light spheres node

Root node

Root camera

Main scene node (Sponza)

Light sources (*)

Lights node

Light geometry (*)

Light source root nodes (*)

Pre−render camera (*)

Pre−render scene node

Pre−render branch Render branch

Figure 12: Diagram showing the structure of the scene graph used in the real-
time implementation. Non-essential branches have been omitted. Nodes marked
with a star (*) and diverging incoming arrows may exist in multiple copies for
each parent node.

30

the lights node. The lights node in turn has all of the light sources in the scene
as its children. The last child node of the real scene node is another group node
called the light spheres node which contains the visual representations of the
light sources, their geometry.

Pre-render setup The scene graph structure of the pre-render branch has
already been described but without any details on how di�erent parts �t together
and interact with each other. The data structures in the implementation use a
utility volume structure. It is actually just a combination of a three dimensional
texture and its corresponding GPU compute memory. The texels have the format
of RGBA values where each component is a 32-bit �oating point value. This
allows for convenient and accurate storage of four component spherical harmonic
vectors. These textures have the same size along each dimension. A hierarchy
volume structure is a hierarchy of volume structures, represented as a vector or
array of volumes. The �rst volume has the full size n×n×n and each successive
volume is one eighth the size of the previous one with the size halved in each
dimension. The RGB volume and RGB hierarchy volume are simple a set of
three volumes or hierarchy volumes, respectively. One for each color channel.
Essentially, an RGB volume is just three regular volumes, one for each color
channel. The data structures based on these structures or used with them are:

Geometry volume - A geometry volume is one hierarchy volume structure,
the source bu�er, coupled with a single regular volume structure, the tar-
get bu�er. The re�ective shadow maps are processed one by one. Each is
injected as geometry into the target bu�er after which these new contri-
butions are merged into level zero of the source bu�er. Once level zero
of the source bu�er contains the contributions of all light sources it is
downsampled so that the other levels are also populated.

Index volume - The index volume is a hierarchy of byte arrays. The array at
level zero has size n0×n0×n0 where n0 is the size of the light propagation
volume structure. Each successive level has ni = ni−1

2 .

Light propagation volume - The light propagation volume itself is a collec-
tion of three RGB hierarchy volumes. These are the source bu�er, target
bu�er and the accumulation bu�er. The source bu�er and target bu�er
swap between each iteration during the propagation. New light from the
re�ective shadow maps is injected into the target bu�er. The accumulation
bu�er contains the sum of the contents of the target bu�er between each
iteration.

Re�ective shadow map - The re�ective shadow map is a set of three cube
map textures4. These contain the encoded depth values, re�ected color
and surface normals, respectively.

All of the memory for these data structures is entirely contained within the
GPU memory and processed using OpenGL shaders and CUDA kernels. Since
it can remain there throughout the entire technique, the potential performance
issues of transferring it back and forth between memories are minimized.

4These are actually implemented as three dimensional textures with each slice representing

one side of the cube map.

31

The re�ective shadow maps are rendered using render-to-texture cameras.
Each light source has six such cameras associated with it, one in each direction
of each axis, X, Y, Z, -X, -Y and -Z. They each use a perspective projection
with a 90◦ �eld of view. Each such camera has three FBOs attached to it,
one for each of the three components in the resulting re�ective shadow map.
Each of the six cameras writes to a di�erent slice of the attached FBO three
dimensional texture, or equivalently, to a di�erent side of the attached FBO
cube map texture. They all use a speci�c shader program during rendering that
is responsible for encoding the light distance, re�ected light color and surface
normal into the three FBOs.

The clear computation node contains thee computation modules. The �rst
two are responsible for setting all the memory used by the light propagation
volume and the geometry volume to zero. Note that only the �rst level Oi of
the light propagation volume's and the geometry volume's target bu�ers needs
to be cleared. The other levels are completely overwritten during downsampling
and the accumulation bu�er is overwritten during the �rst iteration of the prop-
agation step. The last one resets the index volume so that each element points
towards the last level of the octree structure Ol−1.

The inject computation node contains two injection computation modules for
each light source in the scene. The �rst one injects the initial light distribution
itself and the second one injects the geometry. Each geometry injection module
additionally merges the source and target bu�ers of the geometry volume and
then clears the target bu�er again, making it ready for injection from the next
light source.

The downsample computation node contains two downsampling modules,
one for the light propagation volume and one for the geometry volume. Following
the downsample node is the propagation computation node which contains a
single propagation module. It is responsible for performing all of the iterations
of the propagation.

Finally, the merge computation node contains a single merge module. It
merges the levels of the accumulation bu�er. This is done two levels at a time.
Oi is merged into Oi−1 for i = l − 1, . . . , 1. After all the merges the values for
sampling using S(x, y, z) will all be stored in O0(x, y, z). As such, only O0 needs
to be shared with the OpenGL shader program during rendering.

The scene is �nally rendered to the screen by traversal of the render branch.
During this process one shader program is used to combine the contributions
of direct lighting, shadows, indirect lighting and bump mapping. The direct
lighting is performed using traditional phong lighting, taking the bump maps
of the surfaces into account. This is then scaled by a shadow factor determined
by using percentage closest �ltering from the depth component of the re�ec-
tive shadow map with a 2 × 2 kernel. The indirect lighting is determined by
sampling the merged accumulation bu�er after the merge step. It is sampled by
mapping the world position of the fragment into the best matching grid element.
The spherical harmonics function of that grid element is then evaluated for the
opposite direction of the surface normal.

In order to achieve a visually pleasing result the re�ective shadow maps have
a resolution of 1024 × 1024. This high resolution is however only used for the
shadow mapping. The injection into the light propagation volume e�ectively
only use 256 × 256. It is sampled only once in each 4 × 4 region. This allows
for high quality shadows while maintaining reasonable performance during light

32

injection.
The light propagation volume itself has a size of 32×32×32. The other levels

of the octree then have the sizes 16× 16× 16, 8× 8× 8, 4× 4× 4 and 2× 2× 2.
Note that the last level, 1 × 1 × 1 does not exist in this implementation. This
is because there were issues allocating a three dimensional texture with only
a single texel in it. The rest of the technique does however work as previously
described.

Finally, the injection computation module in this implementation is not the
central part of the technique and as such it has only been implemented in a very
simple way by using component-wise atomic write operations to global GPU
memory. This is unlike the original technique which suggests implementing it
using point based rendering instead.

33

Figure 13: Samples of rendered images using the real-time implementation.
The leftmost image shows only indirect illumination without any textures. The
center image shows indirect illumination but with textures. The rightmost image
shows the �nal rendering with both direct light, indirect light and textures. Note
that the e�ect of indirect lighting has been slightly exaggerated in these images.
Full size versions of these images are available in appendix A.

6 Results

The project has yielded a wide range of results. These will be presented in this
section with focus on the quality of the resulting rendering, the correctness of
the light distribution, and on the performance characteristics of the real-time
implementation.

The �nal version of the real-time implementation has been manually tuned
both based on visuals, performance and simulated results. This version uses a
total of k = 4 iterations. As already mentioned, the octree has a size of n = 32
and the re�ective shadow maps have resolution 1024× 1024 while the e�ective
resolution with regard to the light propagation volumes technique is 256× 256.
The propagation factor is set to p = 3.

6.1 Quality and artefacts

In terms of visual quality and visual artefacts, the octree light propagation vol-
umes technique is mostly equivalent to the original light propagation volumes
technique. It shares many of the same strengths and weaknesses. Rendered im-
aged from the real-time implementation are shown in �gure 13. The full size
versions of these images are available in appendix A. There are however some
di�erences that are either directly visible in the rendered result in some situa-
tions or that can be seen using the simulator.

Spatial intensity jumps When two adjacent elements sampled using S(x, y, z)
and S(x̂, ŷ, ẑ) are sampled from di�erent levels i from the octree such that
I(x, y, z) 6= I(x̂, ŷ, ẑ) there are sometimes discrete jumps in the light intensities.
This especially means that it is sometimes possible for light that has almost
died out completely to suddenly regain some intensity. This can cause visual
artefacts in situations where this happens while the involved intensities are still
big enough to be visible. This artefact is illustrated using the simulator in �g-
ure 14. The e�ect in that �gure is exaggerated and in practice it is usually not
noticeable.

34

Figure 14: An illustration of the intensity jumps caused by octree level switch-
ing. Borders between levels are indicated by bolder lines. The e�ect is exagger-
ated in this �gure by using a logarithmic scaling function during rendering a
and speci�cally chosen propagation scaling factor.

Temporal intensity jumps Because of how the index volume is maintained
during propagation the level sampled for I(x, y, z) can depend on where the
closest directly lit geometry in the scene is. In particular, when geometry is
moving in certain ways or the light sources are moving around in the scene
it is possible that I(x, y, z) gives di�erent results in one frame then it did the
previous frame. While the transition between two adjacent grid elements within
one octree level are usually quite smooth, in part thanks to linear �ltering
between the texels, that is not necessarily true for elements on di�erent levels
of the octree. When these conditions occur it is possible to notice that certain
surface areas suddenly appear slightly brighter then the previous frame. This
artefact is unfortunately not easily made visible in a �gure.

Convergence using few iterations After each iteration during the propaga-
tion the overall intensities in the result are lower than in the previous iteration.
This means that after a number of iterations, the contribution of performing
additional iterations is negligible. At this point it can be said that the light
distribution has converged. Since it takes very few iterations for light to propa-
gate throughout the lower resolution levels of the octree, light may have propa-
gated throughout the entire scene without having converged yet. This is however
mostly a theoretical problem. In the real-time implementation there are no clear
improvements when rendering with more than approximately four iterations.

Light propagation distance In the original technique, with the propagation
scheme that is used in this project, the light intensities rapidly decrease after
each iteration. Because of that there is a practical upper limit of how far the light
can propagate in the light propagation volume before it has died out. The exact
distances depend on the scaling factors that are used during the propagation. It
is however rare for light injected in one part of the scene to a�ect the lighting

35

distribution far away even if there is nothing in between to stop the light. Using
the octree representation there can however be a slightly higher light intensity
stored in the lower resolution levels of the octree. This is because it is just the
average of the light intensities in the entire scene. Luckily, these levels of the
octree essentially work like a directional ambient light for the entire scene or
large parts of it. The light intensities themselves also tend to be small enough
not to look unnatural in practice.

Comparison to the original technique The visual quality in practice is ap-
proximately equal to that of the original light propagation volumes technique.
As described above there are some speci�c artefacts that have been introduced
by the use of octrees, but those are only distinguishable in very speci�c sit-
uations. The comparison has been made against both the implementation of
light propagation volumes created during this project and the implementation
of cascaded light propagation volumes created by NVIDIA[6].

6.2 Correctness

Error measurements There are a variety of ways to measure errors of the
type of data contained in a light propagation volume. In this project the error is
measured as the average pairwise error between two spherical harmonics vectors
ae and be. The in�nity norm ||v||∞ = max

i
vi, or max norm, of the vectors is

used to calculate the errors. Both the absolute error ||ae−be||∞ and the relative

error ||ae−be||∞||ae||∞ is considered.

Each element in the octree can be denoted by four indices, the octree level
i and the coordinates within that level (x, y, z). For each such element i 6= 0 it
is possible to calculate an averaged value from the corresponding elements from
level i − 1 according to the downsampling in equation 11. The downsampled
value can be denoted Ôi(x, y, z). There are then two error metrics, the average
absolute error eabs and the average relative error erel of all elements in the octree
i 6= 0. They are de�ned according to:

eabs =
7

8l − 8
·
l−1∑
i=1

∑
p∈Oi

||Oi(p)− Ôi(p)||∞

erel =
7

8l − 8
·
l−1∑
i=1

∑
p∈Oi

||Oi(p)− Ôi(p)||∞
||Oi(p)||∞

In the above expressions, 7
8l−8 is the inverse of the combined number of elements

in O1, . . . , Ol−1, derived from the geometric sum, and p = (x, y, z).
It would certainly be possible to use other error metrics as well. For example,

by comparing S(x, y, z) with the contents of a light propagation volume from
the original technique.

The two metrics eabs and erel are the primary error measurements calculated
by the simulator. It calculates the values for both of them after each iteration
during the propagation. Figure 15 shows the errors for a simulation closely
corresponding to the situation in the real-time implementation. This shows that
the average relative error generally increases steadily up until approximately
20 iterations. After that it is essentially constant. This is simply because there

36

Figure 15: The errors measured after each iteration during a simulation. Both
the average absolute errors and the average relative errors are presented.

is no noticeable light intensity left in the bu�ers at that point. This causes
the accumulation bu�er to remain the same after each iteration. The average
absolute error exhibits a less erratic behaviour. It is also stops increasing much
sooner then the average relative error.

It makes sense for the errors to be increasing gradually each iteration. After
all, during the downsampling, the values of Oi are chosen to be exactly that
of Ôi. Each iteration then introduces a small error compared to what a newly
downsampled value would give. This makes O diverge from Ô more and more
until they stop changing. Using fewer iterations will result in less coverage by
high resolution levels of the octree. At the same time it will also result in less
divergence from the ideal light distribution. Using many iterations can however
void the problem with the higher divergence to some extent since the �nal
solution would instead contain more of the higher resolution levels of the octree,
and speci�cally O0. Along with the related performance considerations it is still
a trade o� between speed, accuracy and visual quality.

Light bleeding and back bleeding There are two important incorrect be-
haviours of indirect light when using the suggested propagation scheme. The
�rst one is that light does bleed back onto the surface that caused it, even if
just slightly. The other is that indirect light propagates through solid occluding
geometry to some extent. Both of these behaviours are incorrect from a physical
perspective and can cause the resulting illumination to appear unrealistic.

37

Figure 16: Illustration of the back bleeding behaviour during propagation. Ini-
tially there is only one element with any light, and it is heavily directed towards
the right. After the second iteration there is clearly light on the wrong side of
the original injection point. There is even more light after a third iteration.

When light is initially injected into the light propagation volume it is directed
in the form of a clamped cosine lobe function along the surface normal. If this
function is evaluated in a direction back towards the surface it will yield zero.
So far it behaves in a realistic way. However, when the light is being propagated
in all the other directions the contributions added to the adjacent elements have
a di�erent direction and often less directional information. Because of this it is
possible for injected light to loop around and cause lighting back onto its own
source surface. This happens in a process of two or more iterations. This back
bleeding is illustrated in �gure 16.

When it comes to the light bleeding through occluding geometry it is im-
portant to remember that the original light propagation volumes technique did
not take indirect occlusion into consideration at all. This is not because it was
correct without it. Rather, this light bleeding was not very strong and rarely
noticeable. The cascaded light propagation volumes technique introduced the
concept of using a geometry volume to enable fuzzy occlusion. A similar solu-
tion was added into the simulator and real-time implementation of this project
as an optional component. The problem with this type of fuzzy occlusion is that
it does not block the light completely but rather just reduces its intensity as
it passes through the occluding geometry. If the occlusion is applied with too
much power, then the discrete nature of the light propagation volume makes it-
self noticeable. If it is not applied with enough power then light will essentially
pass through the geometry unhindered. As a result of these complications the
indirect occlusion is considered mostly as an idea for future improvement rather
then an integral part of the technique.

6.3 Performance and optimization

The performance of a technique intended for use in real-time applications is
essential. The original light propagation volumes technique does run in real-time
on modern hardware. It would theoretically need k = 32 iterations in order to
propagate light throughout the entire volume, even though k = 16 iterations is
often more then enough in practice5. Using the octree light propagation volumes
this number was lowered to k = 4. The intention is that this decrease should
be able to more than make up for the added time to manage the more complex
data structure.

5This is determined using the baseline implementation and visual analysis of the result.

38

All of the performance data in this section is generated on a computer with
a NVIDIA GeForce GTX 480 graphics card. This card is, at the time of writing,
more than two years old. More recent hardware is likely able to boost the results
in this section. Due to lack of time it would not have been feasible to fully op-
timize the entire implementation of the technique. Instead, the focus has been
on optimizing the newly added steps which are closely tied to the octree rep-
resentation. This also includes modi�cations to previously existing steps which
were needed to work with the octree and the index volume. This includes the
downsampling, propagation and merging steps, but generally not the creation
of re�ective shadow maps, light injection6 or the �nal rendering.

Performance measurements The performance of the technique is measured
in the real-time implementation. Di�erent parts are timed individually from
others. A total of eleven parts are timed. Each of those record both how many
times they are invoked and the average and total computation time in millisec-
onds. Most of these parts are implemented using CUDA, which is highly parallel
and performs many of the calls asynchronously by default. This can be prob-
lematic when measuring performance. Thus, application was run with the envi-
ronment variable CUDA_LAUNCH_BLOCKING=1 which disables asynchronous kernel
launches. It should however be noted that this only prevents actual CUDA kernel
launches from being asynchronous, and not necessarily anything else. Speci�-
cally the creation of re�ective shadow maps is not even handled by CUDA at all
but by the internals of OpenSceneGraph and the OpenGL rendering pipeline.
Thus, it may or may not allow for accurate timings to be recorded. Additionally,
some of the clear computation modules, responsible for resetting the data struc-
tures are implemented as simple calls to cudaMemset rather then as an actual
CUDA kernel. As such, these calls may still be asynchronous.

It is also important to realize that other factors may play an important role
in the timings measured when using CUDA. For example, memory transfers
between host and device may be performed asynchronously, but needs to be
completed before the next operation can be started. Because of that, operations
that follow a memory transfer may have to wait for prior memory transfers
before it can run. This can impact performance measurements even more.

The performance of the octree light propagation volumes technique is com-
pared to that of the original, uniform light propagation volumes, technique.
Implementations of both of these were created as part of this project, and it is
the performance of those implementations that is compared. The implementa-
tions run for a total of 500 frames. During that period timings for the various
parts are recorded. The resulting timing data is presented in table 1.

Performance comparison The results from table 1 indicate that the oc-
tree light propagation volumes technique does outperform the traditional light
propagation volumes technique. More precisely, the total rendering time of each
frame is on average reduced by 8%. The results do not guarantee that this will be
true for all implementations of these techniques. For example, implementations
utilizing more e�cient light injection would get a greater improvement. The
propagation is the stage of the technique which experiences the highest increase

6The exception being the updating of the index volume during injection. This is however

a trivial operation.

39

Octree (ms) Uniform (ms)
Part Count Average Total Di� Average Total

Frame 500 106 53193 -4801 115 57994
RSMCreate 9000 0 3053 316 0 2737
GVClear 500 1 671 -50 1 721
GVInject 1500 10 15593 -110 10 15703
GVDownsample 500 0 55 55 - -
IXClear 500 5 2923 2923 - -
LPVClear 500 8 4461 270 8 4191
LPVInject 1500 13 19929 -2884 15 22813
LPVDownsample 500 0 142 142 - -
LPVPropagate 500 7 3788 -5615 18 9403
LPVMerge 500 0 39 39 - -
Total -4914

8.28%

Table 1: Data specifying the amount of times each part of the technique was
executed and how long these executions took, both in total and on average.
The data is presented both for the octree based implementation and the imple-
mentation using uniform light propagation volumes. The times are speci�ed in
milliseconds.

in speed, almost 60%. This follows from the decrease in iterations from k = 16,
when using the uniform implementation, to k = 4, when using the octree imple-
mentation. This speed increase is however slightly countered by the addition of
the downsampling step, the merge step and managing the index volume. These
additional costs are however small in comparison to the gains.

The achieved frame rates with both implementations are fairly low at 9.4
frames per second using the octree implementation versus 8.6 frames per second
using the traditional uniform implementation. Most of the time is lost during
the light and geometry injection which uses up approximately 66% of the frame
time for both implementations. This has almost nothing to do with the octree
implementation.

The NVIDIA implementation of cascaded light propagation volumes from
[6] reaches a frame rate of between 60 and 80 frames per second with similar
settings, but with a single directed light source. This equals a single re�ective
shadow map rather then the 18 that are used in the implementations in this
project.

40

7 Discussion

Error calculations The error calculations presented in section 6.2 have been
used to guide much of the development of the technique. This way of calculating
errors does however have one important weakness which has not been taken into
consideration during this project. It takes fewer iterations for light in a lower
resolution level to propagate than in the higher resolution levels. That means
that there will be situations when the downsampled elements of Ô are calculated
from elements in O which are still zero. This causes the reported errors to be
greater then they really are. It is uncertain to what extent this problem a�ects
the results. Either way, in order to get accurate error measurements the errors
would have to be calculated in a di�erent way. The same basic metric could be
calculated, correctly, by �rst generating a traditional uniform light propagation
volume in advance and then using that to calculate Ô for comparison.

Section 6.2 also presents another possible way of calculating the errors. With
more time it could be bene�cial to investigate both these alternatives and re-
evaluate some of the choices made as a result of the current scheme. This would
include for example the use of independent propagation on each octree level,
the amount of iterations performed and the propagation factor.

Optimized injection As described in section 5.2, the real-time implemen-
tation utilizes atomic add operations to global GPU memory during the light
injection. Section 6.3 additionally shows that the injection is by far the slow-
est part of the implementation. The real-time implementation in this project
uses many more re�ective shadow maps than the other implementations that
have been investigated. Unfortunately the implementation would still be slower.
Still, a more e�cient implementation of the light injection would go a long way
towards eliminating that di�erence.

The original papers on light propagation volumes [10, 11] mention the use
of point based rendering to perform the light injection. This is also what the
NVIDIA implementation [6] appears to be using. Such an approach would likely
be able to perform much better than a CUDA computation kernel using atomic
global memory writes. On the other hand, such an approach would require the
light injection to be implemented as an OpenGL shader rather then a CUDA
kernel. This would result in a more complex and less uniform implementation.
With the potential of such huge performance increases, such an implementation
would still be worthwhile.

Optimization of parallelism for GPGPU computing Graphics hardware
is speci�cally optimized for particular tasks and particular uses. Even if they
can be used for general purpose computations through GPGPU solutions such
as CUDA, the code must still take this into consideration in order to achieve
high performance. Some important things to take into consideration are:

1. Trying to ensure that all threads within each warp7 follow the same path
through the code, speci�cally by not branching di�erently.

2. Making e�cient use of fast memory banks such as registers, local memory
and shared memory wherever possible, instead of global memory.

7A warp is a group of threads that are executed together.

41

3. Ensuring that memory accesses are optimized for caching, accessing them
linearly as textures wherever possible since the hardware is speci�cally
optimized for common texture access patterns.

The technique itself as well as the real-time implementation naturally allows
for a relatively uniform execution. Except for in border cases there is usually
no reason for the processing of adjacent elements to cause diverging branching.
While the implementation could take even more care to optimize for the �rst
point, it already does it relatively well. When it comes to memory access how-
ever, the real-time implementation is not very good. Global memory is used for
a lot of both reading and writing and is even used with slow atomic operations.
Switching to point based rendering for light injection would help this situation
a great deal, but it could also be further optimized in CUDA. For example by
transferring data to more local, and faster, memory and working on it there
rather than directly in global memory.

When it comes to actual memory access patterns, di�erent parts of the
implementation tend to use di�erent memory access patterns. Some of them
imply more random access patterns while some are already accessed linearly
using accelerated texture access operations.

All in all, given more time, it would be possible to improve the CUDA code
greatly to take these points into consideration where they are currently not being
considered. Pro�ling using dedicated CUDA pro�ling tools is likely to reveal
many possible improvements. The NVIDIA Compute Visual Pro�ler con�rms
that the implementation su�ers from low throughput to global memory, that
shared memory could be used to speed up data access instead of using global
memory and that texture memory could also be an alternative for some of the
data that is currently stored in global memory. It also states that some of the
CUDA kernels are divergent, and that optimizing branching with regard to
warps could increase performance additionally.

Viability in practical applications In practical applications and especially
games it is essential that the performance of the technique is high enough to
achieve real-time frame rates, preferably of more than 60 frames per second on
modern hardware. At the same time there should not be any obvious visual
artefacts and in particular no �ickering. All of this should be maintained while
a multitude of other unrelated e�ects and techniques are used at the same time.

The real-time implementation combines the octree light propagation vol-
umes technique with shadow mapping and bump mapping, but not much more.
The achieved frame rate does not even come close to the desired frame rates
for games. With some improvements, such as point based rendering based light
injection, and with fewer re�ective shadow maps, this problem can mostly be
overcome. In that case the technique might be applicable in practical applica-
tions for modern high end hardware as long as not too many other high demand
techniques need to be used as well. With additional optimizations such as those
already suggested in this section the technique could be made more viable for
such applications. There are some visual inaccuracies and artefacts, as described
in section 6.1. With proper tweaking by the artists these should however barely
be noticeable. Finally, running the technique on more modern hardware is likely
to provide a noticeable performance boost as well.

42

7.1 Future work

There are several ways that the octree light propagation volumes technique
could be extended or modi�ed in order to gain various advantages. Some such
ways that were considered during the duration of this project are presented in
this section.

Propagation for di�erent resolutions Each level of the octree has its own
resolution, but they all cover the same volume in world space. This means that
for each level in the octree, the elements have a di�erent size than for the other
levels. The propagation scheme additionally causes the light intensity to fall o�
by distance. This fallo� is however not individually con�gurable, but is rather
baked into the global propagation factor and possibly also into the solid angle
calculation and the reprojection into spherical harmonics. This causes the light
fallo� to be based on the distance in terms of the amount of grid elements rather
than world space distance. Light in a higher resolution level of the octree will
fall o� signi�cantly faster in terms of world space distance than light in a lower
resolution level.

A fallo� behaviour that acts di�erently for each octree level in world space
is not realistic. A solution to this might also help to solve other problems such
as the spatial and temporal intensity jumps described in section 6.1. It would
be possible to overcome this problem by using a separate propagation factor
pi where i = 0, . . . , l − 1 is the level of the octree where the factor is applied.
These propagation factors could be manually tweaked through a trial and error
procedure, but that would be time consuming and error prone. A more promising
solution would be to determine these factors analytically, allowing all of the level
dependant propagation factors pi to be derived from a global propagation factor
p. Unfortunately this is not a trivial thing to do. Given more time it would be
interesting to further investigate the possibility of such a solution.

Alternative octree subdivision strategies There are obviously many ways
that the index volume can be populated. In this project the index volume will
always point to the minimum value for i where the corresponding element of
Oi is non-zero. This will cause the index volume to contain low values close to
directly lit geometry and high values far from such geometry. This appears to
work reasonably well without causing any noticeable artefacts. It may however
be possible to improve it even more.

One possible improvement involves making the index volume contents and
its fallo� more symmetric. In the current technique the change to the lower
resolution levels of the octree can depend greatly on where within the low reso-
lution elements a higher resolution element is located. For example, if some light
is injected into one of the elemenst closest to the center of the octree and then
downsampled, then the worst case is experienced. This would involve a jump
all the way from O0 to Ol−1 in two directions, while a nice gradual transition
is created in the other directions. This situation is illustrated in �gure 17.

This problem is of course greatly countered by the propagation step which, if
necessary, will cause the injected light to spread out across the borders, forcing
each quarter of the octree to create a gradual transition in its own direction.
There can however be situations like this even after the propagation if there are
too few iterations to bridge these borders in various worst case scenarios.

43

3

2

1

0

Figure 17: The jump from the highest resolution level i = 0 to the lowest
resolution level i = 3 that can happen after light injection and downsampling.

A possible improvement could be to construct the index volume so that each
injected value is radially expanded gradually from the injection point instead
of always sampling the highest resolution level with non-zero data. A clever
implementation of this would however be required in order not to have a strong
adverse e�ect on performance.

Propagation between octree levels on the �y In this project the propa-
gation has been performed individually on each level of the octree. This allows
for a simple extension on top of the original light propagation volumes technique.
On the other hand it can be slightly wasteful. Even if an element will never be
sampled because a higher resolution level already provides full coverage over
that entire area, it will still be calculated. The current structure of the index
volume also does not take the full structure of the octree into consideration and
will use only parts of some octree elements.

For this project there was one other method as a candidate for how to popu-
late the octree. This was never developed to the point where any details, or even
the feasibility of it, had been determined. In essence the propagation would only
be performed once for every unique volume in world space without any over-
lap between levels. All other levels covering overlapping volumes in world space
would remain unused. This would involve the light jumping between di�erent
levels of the octree during propagation. This jumping could be performed based
on a criteria similar to what is currently used to create the index volume. The
problem is that such a technique would be more prone to the e�ects of the
propagation behaving di�erently on di�erent levels of the octree. Speci�cally,
this would require a solution to the problem with light fallo� being resolution
dependant.

One potential bene�t of a solution like this would be that, no overlapping
data needs to be maintained, the octree would no longer need to be a full octree.
It can instead use more sparse representation and thus saving memory at the
cost of an overall more complex technique.

44

8 Conclusion

This master thesis project set out to investigate if using an octree representation
with the light propagation volumes technique would bene�t the scalability or
e�ciency of the technique. It also evaluates the possibility of using omnidirec-
tional point light sources.

The project concluded in a new technique and implementation for light prop-
agation volumes using octrees. It uses a representation based on full octrees and
adds a so called index volume which keeps track of which level of the octree to
use for each part of the scene. On top of the original technique and the new
octree representation, the technique also adds new steps of downsampling the
injected light and merging the octree into a traditional uniform light propaga-
tion volume. This is all combined with the use of a proven method for injecting
light from point light sources rather than just directional light sources.

The proposed technique produces an overall pleasing visual result, and per-
formance measurements indicate that key parts of the technique can run signi�-
cantly faster than their counterparts from the original technique. Unfortunately
the use of six re�ective shadow maps per omnidirectional point light results in
a major performance hit. This makes it unrealistic to use the technique with
many such light sources.

There are several visual artefacts and inaccuracies inherent to the technique
which may need to be addressed or hidden prior to use in practical applications.
This can likely be accomplished through artist tweaking, but future work in the
�eld could also focus on addressing these issues in other ways.

References

[1] Tomas Akenine-Möller, Eric Haines, and Naty Ho�man. Real-Time Ren-
dering: Third Edition, chapter 8.3 Ambient Light, pages 295�296. A K
Peters, Ltd, 2008.

[2] Tomas Akenine-Möller, Eric Haines, and Naty Ho�man. Real-Time Ren-
dering: Third Edition, chapter 8 Area and Environmental Lighting, pages
297�325. A K Peters, Ltd, 2008.

[3] Tomas Akenine-Möller, Eric Haines, and Naty Ho�man. Real-Time Ren-
dering: Third Edition, chapter 9 Global Illumination, pages 327�437. A K
Peters, Ltd, 2008.

[4] Tomas Akenine-Möller, Eric Haines, and Naty Ho�man. Real-Time Ren-
dering: Third Edition, chapter 8.6.1 Spherical Harmonics Irradiance, pages
317�323. A K Peters, Ltd, 2008.

[5] Tomas Akenine-Möller, Eric Haines, and Naty Ho�man. Real-Time Ren-
dering: Third Edition, chapter 9.1.4 Shadow Map, pages 348�372. A K
Peters, Ltd, 2008.

[6] NVIDIA Corporation. Nvidia direct3d 11 sdk - di�use
global illumination demo. http://developer.nvidia.com/

nvidia-graphics-sdk-11-direct3d, 0.

45

http://developer.nvidia.com/nvidia-graphics-sdk-11-direct3d
http://developer.nvidia.com/nvidia-graphics-sdk-11-direct3d

[7] Carsten Dachsbacher and Marc Stamminger. Re�ective shadow maps. In
Proceedings of the 2005 symposium on Interactive 3D graphics and games,
I3D '05, pages 203�231, New York, NY, USA, 2005. ACM.

[8] Cyril Crassin et al. Interactive indirect illumination using voxel
cone tracing. http://research.nvidia.com/sites/default/files/

publications/GIVoxels-pg2011-authors.pdf, 2011.

[9] Robin Green. Spherical harmonic lighting: The gritty details. http://

www.research.scea.com/gdc2003/spherical-harmonic-lighting.pdf,
2003.

[10] Anton Kaplanyan. Light propagation volumes in cryengine 3. http://

www6.incrysis.com/Light_Propagation_Volumes.pdf, 2009.

[11] Anton Kaplanyan and Carsten Dachsbacher. Cascaded light propagation
volumes for real-time indirect illumination. http://dx.doi.org/10.1145/
1730804.1730821, 2010.

[12] Alexander Keller. Instant radiosity. http://dx.doi.org/10.1145/

258734.258769, 1997.

[13] Aaron Knoll. A survey of octree volume rendering methods. http://www.
cs.utah.edu/~knolla/octsurvey.pdf, 2006.

[14] Samuli Laine, Hannu Saransaari, Janne Kontkanen, Jaakko Lehtinen, and
Timo Aila. Incremental instant radiosity for real-time indirect illumina-
tion. In Proc. Eurographics Symposium on Rendering 2007, pages 277�
286. Eurographics Association, 2007. http://www.tml.tkk.fi/~timo/

publications/laine2007egsr_paper.pdf.

[15] Morgan McGuire and David Luebke. Hardware-accelerated global illumi-
nation by image space photon mapping. http://dx.doi.org/10.1145/

1572769.1572783, 2009.

[16] Frank Meinl. Cryengine 3, crytek - sponza model. http://www.crytek.

com/cryengine/cryengine3/downloads/, 2010.

[17] Ravi Ramamoorthi and Pat Hanrahan. On the relationship between radi-
ance and irradiance: Determining the illumination from images of a convex
lambertian object. Journal of the Optical Society of America (JOSA), 2001.

[18] Tobias Ritschel, Thorsten Grosch, and Hans-Peter Seidel. Approximat-
ing dynamic global illumination in image space. http://dx.doi.org/10.
1145/1507149.1507161, 2009.

[19] Jesper Børlum et al. Sslpv subsurface light propagation vol-
umes. http://cg.alexandra.dk/wp-content/uploads/2011/06/SSLPV_
preprint.pdf, 2011.

[20] Peter-Pike Sloan. Stupid spherical harmonics (sh) tricks. http://www.

ppsloan.org/publications/StupidSH36.pdf, 2008.

46

http://research.nvidia.com/sites/default/files/publications/GIVoxels-pg2011-authors.pdf
http://research.nvidia.com/sites/default/files/publications/GIVoxels-pg2011-authors.pdf
http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.pdf
http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.pdf
http://www6.incrysis.com/Light_Propagation_Volumes.pdf
http://www6.incrysis.com/Light_Propagation_Volumes.pdf
http://dx.doi.org/10.1145/1730804.1730821
http://dx.doi.org/10.1145/1730804.1730821
http://dx.doi.org/10.1145/258734.258769
http://dx.doi.org/10.1145/258734.258769
http://www.cs.utah.edu/~knolla/octsurvey.pdf
http://www.cs.utah.edu/~knolla/octsurvey.pdf
http://www.tml.tkk.fi/~timo/publications/laine2007egsr_paper.pdf
http://www.tml.tkk.fi/~timo/publications/laine2007egsr_paper.pdf
http://dx.doi.org/10.1145/1572769.1572783
http://dx.doi.org/10.1145/1572769.1572783
http://www.crytek.com/cryengine/cryengine3/downloads/
http://www.crytek.com/cryengine/cryengine3/downloads/
http://dx.doi.org/10.1145/1507149.1507161
http://dx.doi.org/10.1145/1507149.1507161
http://cg.alexandra.dk/wp-content/uploads/2011/06/SSLPV_preprint.pdf
http://cg.alexandra.dk/wp-content/uploads/2011/06/SSLPV_preprint.pdf
http://www.ppsloan.org/publications/StupidSH36.pdf
http://www.ppsloan.org/publications/StupidSH36.pdf

[21] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency lighting environ-
ments. In Proceedings of the 29th annual conference on Computer graphics
and interactive techniques, SIGGRAPH '02, pages 527�536, New York, NY,
USA, 2002. ACM.

A Rendered images

Figure 18: The sponza scene rendered using only indirect illumination and
without any di�use texturing. Note that the indirect lighting has been slightly
exaggerated in this image.

47

Figure 19: The sponza scene rendered using only indirect illumination but with
di�use texturing. Note that the indirect lighting has been slightly exaggerated
in this image.

Figure 20: The �nal rendering of the sponza scene with both direct and indi-
rect illumination and di�use texturing. Note that the indirect lighting has been
slightly exaggerated in this image.

48

	Introduction
	Previous work
	Real-time global illumination
	Spherical harmonics
	Light propagation volumes
	Virtual point light creation
	Light injection
	Propagation
	Rendering

	Point light injection

	Method
	Integration of existing techniques
	Octree light propagation volumes

	System description
	Light propagation volume simulator
	Real-time implementation

	Results
	Quality and artefacts
	Correctness
	Performance and optimization

	Discussion
	Future work

	Conclusion
	Rendered images

